根据测量方法的不同,锂离子电池内阻分为直流内阻和交流内阻。电池直流内阻的研究更有实际意义,因为它包含了欧姆阻抗、电化学极化阻抗、浓差极化阻抗等各部分的影响。在电池的使用过程中,随着电池的老化,内阻也随之发生变化,不同的老化因素会导致不同的内阻变化,因此可以用内阻作为参数来表征电池的寿命,分析电池老化的原因。
为了表征内阻的变化以及不同阻抗在内阻中的贡献,广泛采用电化学阻抗谱(EIS)技术研究锂离子电池阻抗及电池老化过程中的阻抗变化。作为无损测量技术,EIS测试可以在电池的整个生命周期进行,不需要对电池进行拆解就可以诊断电池的健康状态SOH、SOC、内部温度等信息,辨识电池老化过程中的阻抗演化规律,对于电池的优化设计提供数据。此外,EIS数据可以为等效电路模型辨识模型参数,确保电池管理系统能够准确预测电池的状态,为电池提供更合理的使用策略。
本文研究目的是采用高镍-石墨锂离子电池,考察电池在0.5C、1C、2C和阶梯充电等充放电策略的循环性能,测试循环过程中的电池直流内阻,并采用EIS测量不同循环次数的阻抗,探究电池老化过程中内阻变化规律,通过电池阻抗的变化来分析电池可能的老化原因。
1 实验1.1 软包电池制作本文研究中所用电池为叠片软包电池,正极采用NCM811材料,负极采用石墨材料。由于要测试4种不同倍率充放电循环,电池相对应的编号为1#,2#,3#,4#,电压使用区间2.5~4.2V,电池的相关信息见表1。
1.2 循环测试流程循环测试流程:电池放置在恒温箱内测试,恒温25℃,采用Arbin BT-2000电池测试系统进行测试。4 种充放电策略如下:
策略1充电:0.5C恒流充电至4.2V,恒压充电至截止电流为0.05C,静置20min;放电:0.5C恒流放电至2.5V,静置20min。
策略2充电:1C恒流充电至4.2V,恒压充电至截止电流为0.05C,静置20min;放电:1C恒流放电至2.5V,静置20min。
策略3充电:2C恒流充电至4.2V,恒压充电至截止电流为0.05C,静置20min;放电:2C恒流放电至2.5V,静置20min。
策略4充电:0~10%SOC,1C恒流充电;10%~40%SOC,2.9C恒流充电;40%~50%SOC,2.4C恒流充电;50%~60%SOC,2.0C恒流充电;60%~80%SOC,1.5C恒流充电;80%~100%SOC,1C恒流充电至4.2V,恒压充电至截止电流为0.05C;充满电后静置20min;放电:1C恒流放电至2.5V,静置20min。
以上4种策略重复进行循环充放电至电池容量保持率为80%。
1.3 EIS和直流内阻测试流程电池在进行不同策略循环过程中,4种策略每循环200次进行一次EIS测试和直流内阻测试。将电池放置在恒温箱内测试,恒温25℃,电池调整到SOC=50%后静置4h再进行EIS测试,采用恒电位测量方法,交流电压为1.5mV,频率范围为:10mHz~100kHz,测试设备为Gamry30KB OOS TER。
直流内阻测试流程为:将电池放置在恒温箱内测试,恒温25℃,电池调整到SOC=50%后采用1C电流放电15s,通过放电前后电压计算直流内阻。
2 结果与讨论2.1 不同倍率的循环性能在温度为25℃,采用4种不同循环策略条件对电池进行了近2000次循环测试。图1是电池在4种循环策略下的放电容量保持率。图2是每200次循环在0.33C倍率下测试的放电容量保持率。图2在0.33C标定的容量衰减趋势与图1一致。从图1可以看出,1#电池在0.5C倍率下循环1300次后,容量保持率为81.2%;2#电池在1C倍率下循环到1300次,容量保持率为82.8%;3#电池在2C倍率下循环到1300次,容量保持率为89.4%;4#电池在阶梯充电策略下循环到1300次,容量保持率为89.6%。
循环测试结果表明,1#电池在0.5C倍率循环时电池容量衰减速率最快,3#电池在2C倍率循环和4#电池阶梯充循环容量衰减速率接近,电池在这两种策略下循环性能好,2#电池在1C倍率循环时比2C衰减快,但比0.5C衰减慢,也就是电池循环倍率越小,容量衰减速率越快。造成这种趋势的原因如下:首先,在低倍率循环时,电池单次循环充放电的时间更长,比如0.5C充放电的时间为1C的两倍,所以按循环次数来对比的话,表观上表现出低倍率循环性能更差,如果按电池使用时间来对比,低倍率循环的电池寿命更长。
其次,由于电池循环的进行,电池的内阻也会增长,充放电时的极化会增大,因此电池在高倍率充电时,电池的充电电压很快就会到达截止电压4.2V,负极材料不会完全嵌锂,正极材料不会完全脱锂,活性材料结构会更稳定,有利于延长材料寿命,容量衰减会变缓;同样放电时,高倍率的放电电池电压会快速下降到截止电压2.5V,电池的放电深度较小,同样有利于延长材料寿命,容量衰减也会变慢,也就是电池在高倍率下类似于浅充浅放,因此对于电池的寿命更有利。
2.2 EIS分析图3是电池在不同循环次数的电化学阻抗谱的测试结果,从图中可以看出,循环前期尤其是前600次循环,阻抗谱图中的半圆弧在减小,这部分与电化学反应时的电荷转移阻抗相关,这意味着循环前期电荷转移阻抗呈下降趋势,导致电池总阻抗下降,这与直流内阻的测试结果一致。电池循环到600次后,电池阻抗开始增加,循环至容量保持率80%附近时,可以看出阻抗的增加非常明显。
采用如图4所示的等效电路模型分别对电池循环前和循环400次的电化学阻抗谱进行拟合,主要目的就是通过拟合来研究电荷转移阻抗的变化,拟合结果见表2。从拟合结果可以看出,电池在4种循环策略进行循环充放电时,在400次循环的电荷转移阻抗相比循环前降低,这也导致了图5中直流内阻的减小。
2.3 直流内阻分析图5是电池在4种循环策略循环过程中的直流内阻测试结果,结果表明在不同循环策略时,前600次循环电池都表现出内阻略有下降,不同策略的电池内阻相差不大,从600次后,随着循环的进行,内阻呈持续增加的趋势,说明电池的极化越来越大。
从图5中可以看出,从1000次循环开始,电池内阻增长速度变快,根据内阻增长值排序依次为2#(1C)>3#(2C)>1#(0.5C)>4#(阶梯充)。图6为电池在4种循环策略条件下第1000次循环的电化学阻抗谱。从图6可以看出,4种不同循环策略电芯的电化学阻抗谱中半圆弧大小依次为:1#>2#>4#>3#,这部分与电化学反应时的电荷转移阻抗相关,不同循环倍率下的电荷转移阻抗差别较大,尤其是在0.5C循环的1#电芯电荷转移阻抗大。
根据文献,电池内阻主要包括电子阻抗、离子阻抗、接触阻抗、电荷转移阻抗。根据图5的直流内阻数据,对于本文的电化学体系电池,可知循环后期(1000 次后)电荷转移阻抗并非直流内阻中决定因素。一般来说,循环过程接触阻抗不会有较大的变化,因此本文中直流内阻随循环的进行应该与电子阻抗和离子阻抗相关。电子阻抗与极片的导电网络相关,而离子阻抗与极片的孔隙率和电解液的电导率相关。电池在不同倍率循环后,极片状态差异较大。在较大倍率循环时,活性材料在脱嵌锂的过程中所受的应力较大,可能会导致活性材料和极片发生破裂,破坏导电网络,影响电子导电;如果极片发生破裂或者电解液在极片表面发生副反应,会导致极片孔隙率的降低,影响锂离子在极片中的迁移,进而影响离子导电。
结合图1和图5来看,循环后2#电池的容量衰减速度快、内阻增长明显,说明在1C循环后,极片劣化严重,而3#和4#由于充放电深度比1#电池要小,极片的劣化会减缓,该规律与文献中的研究一致。由于1#电池在较低的倍率下循环,活性材料在脱嵌锂的过程中所受的应力较小,活性材料和极片发生破裂的程度不严重,内阻的增长可能与 SEI膜和CEI膜的增厚相关性较大。
3 结论本文采用三元体系电池研究在0.5C,1C,2C和阶梯充下的循环性能,根据测试结果按照循环次数进行对比,电池在2C和阶梯充电策略的循环性能最好,2C循环1900次后容量保持率为78.6%;在阶梯充电策略下循环到1800次,容量保持率为79.2%。同时在循环过程中还测试了电池的直流内阻与EIS,从直流内阻数据可以发现随着循环的进行,内阻呈先略下降再增长的规律,并且阶梯充电的内阻增长最小。通过EIS的研究,电池阻抗随循环的进行与直流内阻保持一致的规律,即先下降后增长。通过本文研究可以发现,阶梯充电是比较合适的充放电策略,既能保证较快的充电速度,同时还能延缓电池的衰减。